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A Comprehensive Understanding of Fission?

Fission Fragment 
Yields
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T-2 Nuclear Physics Group, Theoretical 
Division, LANL

• Toshihiko Kawano
• Patrick Jaffke (postdoc)
• Skip Kahler*
• Eric J. Lynn (consultant)
• Peter Möller*
• Denise Neudecker (XCP-3)
• Arnie Sierk*
• Ionel Stetcu
• Patrick Talou

u (n,f), (g,f), (t,pf), etc. cross sections
u Fission fragment yields Y(A,Z,TKE)
u Fragment angular distributions
u The (n,gf) process
u Prompt fission neutron spectrum
u Correlations in prompt fission data
u Prompt fission g rays
u Benchmarking (not just fission) and 

evaluations

Selected Fission Topics
T-2 group

(working on nuclear fission)
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Fission Fragment yields
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Fission Fragment Yields 
(slide borrowed from Peter Möller & J. Randrup)

!"#$%&'$()*)$

!"#$%&'%()*'+,(-#.#%(

%+,-./0$1.2304/536$.6.078#$$/1.20&1213141-5(

Q2

45 Q2 ~  Elongation (fission direction) 

35 !g ~  (M1-M2)/(M1+M2) Mass asymmetry

15 "f1 ~  Left fragment deformation

"f1 "f2

15 "f2 ~  Right fragment deformation

15
#

#

#

#

d ~  Neck 

d

Five Essential Fission Shape Coordinates

M1 M2

$  5 315 625 grid points % 306 300 unphysical points
$  5 009 325 physical grid points

9:/;$<3=.65/-#$$6>:/;0&5(7(68(098:9;5;(

?,:;;:36#$$@0:5,/-$6.,A$0/1:+;$<8$B$(CD$24$

E.F.-$1.6;:=8$</0/4.=.0#$$'=(7(=GHI$J.KL$

M.4<.0/=+0.$>?((/@A(/1.2(7('=>;(

J.=03<3-:;$N/-A#$$

&C$JO--.0$,B('4P$%/=+0.$Q)R$H())*L$SID$

:$
T$
A$
-$
4$

7C((60!5(7(/1.2(D(6>:/;$

E*'%F,()*'+,?((!$$µ!!$!U$V$
60!`5(G(60!5?((-#H,($&B*(I(7(J$
60!`5(C(60!5?((-#H,($&B*(I(7(,K+0A"6:>5$

!$

%C$J.=03<3-:;$,B('4P$!$@W.4$&W8;$(X$H*RDYL$*)IS$



Los Alamos National Laboratory
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

12/18/17|   6

Selected results

Calc. Y(N) = ΣZY(Z,N)     
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Fission Fragment Yields

12/18/17 |   7

• Results are very promising
P. Möller and C. Schmitt, EPJA 53, 7 (2017)

• E*-dependent yields parameterized by 5 
Gaussians – Patrick Jaffke (postdoc)
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Working on Pu, U and Np series
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Langevin model calculations
• Classical dissipative system with fluctuating damping forces

Inertia tensor
Nuclear shape coordinates

Dissipation tensor

dqj
dt

=
@H

@pj
=

@(K + V )

@pj
=

1
2M

�1
jk pjpk

@pj
= M�1

jk pk

dpj
dt

=
@H

@qj
= �@V

@qj
q̇k q̇l � ⌘jk q̇k +

r
2T

�t
�jk⇥k(t)

Nuclear temperature

Stochastic 
function

A. J. Sierk
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Some results with the Langevin model

235U 239Pu
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Highlight from first microscopic calculation of 
240Pu fission:
• Fully unrestricted 3D calculation with 

full nuclear energy density functional
• Long evolution times from outer fission 

saddle to full scission
• TKE predicted within 3% of expected 

values
• Light fission fragment heavily 

deformed, heavy fission fragment 
spherical (as expected)

• Demonstrated the essential role played 
by pairing correlations in nuclear shape 
evolution

Time-Dependent  Density Functional 
Theory with Nuclear Energy Density 

Functional a la Skyrme

Construct constrained initial state near the 
outer fission barrier

Evolve in time beyond the scission point

Full characterization of fission fragment 
properties as a function of initial excitation 
energy of the fissioning nucleus
(neutron incident energy):

- Average mass, charge, excitation 
energy, and angular momentum
- TKE of fission fragments

Bulgac et. al, PRL 116, 122504 (2016)

I. Stetcu

Fission Fragment properties within 
TD-SLDA
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• Significant amount of collective 
shape and pairing oscillations 

• Time from saddle to fission is 
sensitive to the functional 

Bulgac et. al, PRL 116, 122504 (2016)

Average fission fragment properties
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Fission Dynamics
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Modeling of prompt fission neutron 
and gamma properties
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CGMF

q CGM 
§ Monte-Carlo implementation of the de-excitation of 

compound nuclei using the Hauser-Feshbach model
§ Full treatment of neutron-gamma competition
§ Phenomenological approach, many parameters from 

experiment or systematics

q F
§ Monte-Carlo sampling of fission fragment yields
§ (Monte-Carlo sampling of pre-fission neutrons)
§ Parameterization of

1. fission yields (mass, charge, TKE)
2. TXE sharing between FFs
3. FF angular momenta

Y (A,Z, TKE, J,⇡;En) ⇡ Y (A;En)Y (Z|A)Y (TKE|A;En)P (J)P (⇡)
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Fission simulation

q Assumptions:
u prompt fission products emitted from the fully accelerated 

fragments
u no emission occurs during the evolution from saddle to scission
u no emission at the neck rupture

q Model:
§ Consider fission fragments compound nuclei
§ Model neutron and gamma emissions in Hauser-Feshbach

formalism
§ Monte-Carlo: access to more quantities (e.g. average 

multiplicities), correlations
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Hauser-Feshbach formalism

Neutron emission probability:

ü Transmission coefficients computed 
using an optical model 

ü Density of states

Gamma emission probability:

ü Transmission coefficients calculated 
from the gamma strength function 
(Brink-Axel hypothesis)

ü Density of states
ü Discrete levels
ü Branching ratios

P (�n)dE / Tn(�n)⇥(Z,A� 1, E � �n � Sn)

P (��)dE / T�(��)⇥(Z,A,E � ��)

initial conditions play an important role

MC approach
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Neutron-induced fission schematics
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Multi-chance fission
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o Double-hump fission barrier penetrability 
calculations

o Fission probabilities/barrier not observables
o Other fission observables sensitive to the 

fission probabilities?
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TKE distribution
For each FF mass, assume a Gaussian distribution* given by TKE(A) and σTKE(A)

* Needs corrections because of the Q value

D.G. Madland / Nuclear Physics A 772 (2006) 113–137 121

Fig. 6. Average total fission-fragment kinetic energy for the n(En) + 239Pu system.

thresholds. For our present purposes, however, we represent these data with quadratic fits for both
the total fission-fragment and total fission-product kinetic energies because the corresponding
experimental data for 235U and 239Pu are much lower in quality and over more limited energy
ranges. We note that the recent experimental data of Vivès et al. (2000) [11] for this system,
over an incident neutron energy range of 1.2–5.8 MeV, are in substantial agreement with the
corresponding data of Zöller (Fig. 4). The maximum discrepancy between the two measurements
is ∼ 0.7% at about 1.5 MeV.

For the n + 238U system:
〈
T tot

f

〉
= (171.7 ± 0.05) − (0.2396 ± 0.01)En + (0.003434 ± 0.0004)E2

n (MeV), (20)
〈
T tot

p

〉
= (169.8 ± 0.05) − (0.3230 ± 0.01)En + (0.004206 ± 0.0004)E2

n (MeV). (21)

The experimental data that we use for the n + 239Pu system are those of Akimov et al. (1971)
[12] shown in Figs. 6 and 7 for incident neutron energies up to 5.5 MeV. Here, the data are not
high enough in incident neutron energy to ask whether structure exists near the second-chance
fission threshold.

Linear fits appear to be quite adequate for the limited energy range and, strictly, the fits should
not be used above about 5.5 MeV. Note that in this system we have the steepest drop in the total
kinetic energies with increasing incident neutron energy of the three systems under consideration.

For the n + 239Pu system:
〈
T tot

f

〉
= (177.80 ± 0.03) − (0.3489 ± 0.02)En (MeV), (22)

〈
T tot

p

〉
= (175.55 ± 0.03) − (0.4566 ± 0.02)En (MeV). (23)
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Mass and charge yields
Vogt et. al., PRC 85, 024608 (2012) 
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NL(En)p
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X
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Quadratic energy dependence

exponential energy dependence

2N1 + 2N2 +NL = 2

Zp = Ah
Zc

Ac
+�Z (Wahl Systematics)

In the future we plan to use data from model 
simulations (Moller/Sierk/Bulgac) 
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TXE sharing and angular momenta

RT =
Tl

Th

P (J) / (2J + 1) exp

�
�J(J + 1)/(2B2

)

�

B2 =
IT
~2 I = ↵I0

rig(Z,A,�)

RT(A) kept constant at all energies

• α fitted to fine tune nubar below 2nd chance fission
• energy dependence extended to 20 MeV

TXE = Qf (Al, Zl;Ah, Zh;Ac, Zc)� TKE

= Ml +Mh �Mc + Einc +Bn(Ac, Zc)� TKE
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Forward propagation of detector 
response
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inverting the detector response function
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Important considerations for γ rays

Experimental time coincidence window Energy detection threshold
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Selected gamma observables
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Entrance channel dependence
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High-energy g rays (> 8 MeV)
• Impact of GDR in Tg(eg) in FF
• Constraints on CGMF input 

parameters

• Similar trend as in experiment between 3-8 MeV 
• Sensitivity to g strength function 
• Sensitivity to level densities

Dietrich, Browne et al, PRC 10, 795 (1974)

Makii, Nishio et al, ND2016
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Multiplicity-dependent spectra
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Selected observables vs. incident 
energy
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Neutron multiplicity probability
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Sensitivity to select parameters
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Sensitivity to multi-chance fission probabilities 

Sensitivity to  the deformation



Los Alamos National Laboratory
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

12/18/17|   31

nth+U-235

PFNS (A) Wn-LF(A)

Exp. data by Göök, Hambsch, PRC 90, 064611 (2014) 
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Correlated fission data
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<n>(TKE)
• How much energy does it cost the 

fragment to emit a neutron?
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Neutron Angular Distributions

• Neutrons are focused along the fission 
axis

• n-n correlations show stronger emissions 
near 0o and 180o

(No detector response folded.)
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Summary

ØTheoretical approaches to fission fragment yields:
o Brownian motion
o Langevin model
o TD-SLDA

ØEmission of prompt fission neutrons and gammas/ correlations (CGMF):
o De-excitation of fission fragments described within the Monte-Carlo Hauser-

Feshbach formalism
o Spontaneous (252Cf, 240Pu, 242Pu) and neutron-induced fission up to 20 MeV (235U, 

238U, 239Pu, 241Pu)
o Simple model for TKE and spin as a function of incident energy
o Reasonable description of experimental data, but not everything
o Incorporate input from models (Moller, Sierk, Bulgac)
o Incorporated into transport simulations (part of MCNP)


